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Hydrodynamic finite-size scaling of the thermal conductivity in
glasses
Alfredo Fiorentino 1✉, Paolo Pegolo 1 and Stefano Baroni 1,2

In the past few years, the theory of thermal transport in amorphous solids has been substantially extended beyond the Allen-
Feldman model. The resulting formulation, based on the Green-Kubo linear response or the Wigner-transport equation, bridges this
model for glasses with the traditional Boltzmann kinetic approach for crystals. The computational effort required by these methods
usually scales as the cube of the number of atoms, thus severely limiting the size range of computationally affordable glass models.
Leveraging hydrodynamic arguments, we show how this issue can be overcome through a simple formula to extrapolate a reliable
estimate of the bulk thermal conductivity of glasses from finite models of moderate size. We showcase our findings for realistic
models of paradigmatic glassy materials.

npj Computational Materials           (2023) 9:157 ; https://doi.org/10.1038/s41524-023-01116-2

INTRODUCTION
The theory of thermal transport in crystalline and disordered solids
has witnessed a major advancement in the past few years1–7. Until
recently, the only way to simulate heat transport in glasses and
complex crystals was through the sheer application of the
Green–Kubo (GK) linear-response theory, leveraging the heat-
flux time series generated by Molecular Dynamics (MD) simula-
tions8–12. Among the many merits of this approach is the full
account of anharmonic effects of any order; however, the same
cannot be said of quantum effects, which may be important at low
temperatures, but cannot be captured by any classical method.
The quest for a more convenient way of computing the thermal
conductivity in glasses and complex crystals led to the unification
of the approaches based on the Boltzmann Transport Equation
(BTE) for crystalline materials13,14, and the Allen–Feldman (AF)
model of thermal conduction in harmonic glasses15,16, resulting in
the quasi-harmonic GK (QHGK)2 and Wigner-transport-equation
(WTE)3 approaches to heat conduction. The former method
consists of an explicit evaluation of the GK expression of thermal
conductivity from the anharmonic lattice dynamics of a solid close
to mechanical equilibrium2,5,17, while the latter exploits a different
transport equation based on Wigner’s quantum dynamics3,4,6.
Despite their differences, these two methods provide comparable
results and are in fact conceptually equivalent, both being
approximations of the same order to a general many-body
approach based on GK linear-response theory and the Mori
memory-function formalism5. These methods suggest that the
behavior of thermal conductivity in anharmonic solids can be
understood in terms of the interplay between a quasi-particle
kinetic mechanism, whereby traveling phonons propagate and
scatter across many interatomic distances, and a diffusive regime,
where disorder breaks the quasi-particle nature of phonons, and
heat is transported through short-range hopping mechanisms.
These advances notwithstanding, the numerical simulation of

heat transport in glasses remains a formidable task, because it
requires the use of large finite models for the bulk systems,
comprising up to several thousand atoms2,7,18,19. The same would
be true even for crystalline materials, the difference being that, in
such a case, lattice periodicity and the Bloch theorem can be

exploited to map the simulation of a large model onto a number
of computations performed for the vibrations of definite
wavevector in the Brillouin zone (BZ), k, of a unit cell comprising
a much smaller number of atoms. These wavevectors are usually
arranged in a regular grid whose number of nodes is the ratio
between the total number of atoms in the bulk model and the
number of atoms in the unit cell. The effective model that can thus
be afforded has a linear dimension L � 2π=kmin, kmin being the
discretization step of the regular grid, and it may encompass up to
several hundred thousand atoms. Unfortunately, the spurious
crystalline order introduced by the use of periodic boundary
conditions (PBCs) in the simulation of finite glass models results in
unphysical long-wavelength features in their transport properties7,
as it will be extensively illustrated in the following.
These issues call for a method able to efficiently and accurately

extrapolate to infinite size the value of the thermal conductivity of
aperiodic solids, such as glasses, without the need to artificially
introduce nonphysical normal modes, which may lead to a gross
overestimate of the final result. We devise such a method by
leveraging arguments based on the hydrodynamics of solids,
which exploit the natural partition of glassy normal modes into
categories based on their localization in real space20: propagons
are delocalized, low-frequency, vibrations whose typical wave-
length is much larger than the interatomic distance and that
therefore propagate almost freely as plane (sound) waves;
diffusons are intermediate-energy vibrations that spread diffu-
sively; finally, locons are localized excitations that populate the
highest-frequency portion of the vibrational spectrum and they
hardly contribute to the transport properties of the system. Being
long-wavelength vibrations, propagons are severely affected by
the finite size of any glass model. In fact, the size of the system
sets a lower bound to the minimum frequency accessible to the
calculation, and determines the normal-mode spacing in the low-
frequency region, which is already undersampled with respect to
other portions of the spectrum, due to the vanishing of the
Vibrational Density of States (VDOS) in the zero-frequency
limit2,17,21. In this article we report on a method, which we dub
hydrodynamic extrapolation, able to lift these problems through a
combination of two ingredients that can be inexpensively
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computed from finite models of moderate size: one is the QHGK
contribution of diffuson and locons2,5,17, the other being an
effective low-frequency model for propagons. The term “hydro-
dynamic” is more often used in the context of the collective
phonon transport in crystals22. Here, we adopt this term in a
similar vein, as the underlying equations governing both crystals
and glasses at low frequencies obey the same hydrodynamic
principles23.
We underline that the hydrodynamic extrapolation applies

above the so-called plateau of the thermal conductivity as a
function of temperature which is found in many glassy materials.
The temperature dependence of κ in glasses features three
universal characteristic trends24: at very low temperatures, i.e.
T≲ 2 K, the dominant scattering mechanism is the quantum
tunneling between different local minima in the glass energy
landscape, and κ is quadratic in temperature25–27; then, up to
≈30 K, the thermal conductivity rises and saturates to a plateau
value. Despite the absence of an established theoretical agree-
ment in the literature, this phenomenon seems to be related to
the crossover between the regime dominated by quantum
processes and one where propagating waves are scattered by
random disorder24,26–28. Above the plateau, the behavior of κ is
dictated by the anharmonic decay of normal modes as prescribed
by the QHGK theory. Since we do not have access to quantum-
tunneling states that play a crucial role at low temperatures, in this
work we focus on the third regime.
The structure of this paper is as follows: first, we briefly review

the QHGK method for computing the thermal conductivity of
crystals and solids alike; then, we discuss the possibility of
simulating heat transport in glasses from finite models in PBCs; we
then introduce our hydrodynamic extrapolation technique, based
on an effective low-frequency model for propagons; next, we
illustrate our newly introduced method with a few numerical
experiments performed for three paradigmatic classes of glass
(amorphous silicon carbide, silica, and silicon); finally, we draw our
conclusions. Following is a thorough description of the theoretical
methods employed in our work.

RESULTS AND DISCUSSION
The Quasi-Harmonic Green–Kubo approximation
The quantum GK formula for the thermal conductivity tensor, κ,
reads29–31:

κ ¼ 1
VT

Z 1

0
dt

Z 1
kBT

0
dλ bJðt � i_λÞbJð0ÞD E

; (1)

where V is the system’s volume, kB is Boltzmann’s constant, T is the
temperature, bJ is any Cartesian component of the energy-flux
operator in the Heisenberg representation, and isotropy is
assumed throughout this paper, thus allowing us to dispose of
Cartesian indices unless strictly needed for clarity. Both crystalline
and amorphous materials are normally described by finite-size
models in PBCs, and normal modes can be labeled by wavevectors
and band indices. Any Cartesian component of the harmonic
energy flux operator reads2,32:

bJ ¼ _
P
qνν0

ωqνþωqν0
2 vqνν0 â

y
qνâqν0

þ _
P
qνν0

ωqν�ωqν0
4 vqνν0 ðâ�qνâqν0 � âyqνâ

y
�qν0 Þ;

(2)

where (q, ν) labels wavevector and band indices in the BZ,
respectively; âyqν and âqν are the creation and annihilation
operators, respectively; ωqν is the angular frequency of the normal
mode; vqνν0 is a generalized group velocity2,6 (see Eq. (31)) which
satisfies

vqνν0 ¼ v�qν0ν ¼ �v�qν0ν: (3)

Here again, the Cartesian index of the velocity is dropped for
notational simplicity. We stress that, while for crystals the
classification of normal modes by their wavevectors reflects a
physical symmetry of the systems, in glasses it is simply an artifact
due to the use of PBCs. When large enough models are used to
describe the glass, it is common practice to just sample the BZ
center (Γ, q= 0), although ways of leveraging the phonon
dispersions resulting from the use of PBCs in glasses have
recently been proposed7. The first, number-conserving term, in
Eq. (2) is called resonant, while the second, anti-resonant, gives
negligible contributions in the small-linewidth limit and will be
neglected in the following. The diagonal term of the generalized
velocity is the usual phonon group velocity: vqνν=∇qωqν.
Equations (1) and (2) lead to the QHGK approximation to the
thermal conductivity2,5,17

κ ¼ 1
V

X
qνν0

Cqνν0vqνν0vqν0ντqνν0 ; (4)

where

Cqνν0 ¼ _2ωqνωqν0

T
nqν � nqν0

_ðωqν0 � ωqνÞ
(5)

is the generalized two-mode heat capacity, nqν ¼ ðe_ωqν=kBT � 1Þ�1

the Bose–Einstein distribution, and

τqνν0 ¼ γqνþγqν0
ðωqν�ωqν0 Þ2þðγqνþγqν0 Þ2 (6)

is the generalized two-mode lifetime. In a nutshell, the QHGK
approach entails two different—yet related—approximations, The
first is the dressed bubble approximation of four-point correlation
functions among creation and annihilation operators; it amounts to
neglecting vertex corrections to factorize four-point correlation
functions into sums of products of two-point correlation functions5.
This means that normal modes decay independently of one
another due to effective interactions with a common heat bath. The
second approximation, often referred to as Markovian, is to ignore
any memory effects in the interaction between the heat bath and
the normal modes5. The combination of these two approximations
in the QHGK approximation is that four-point correlation functions
can be expressed in terms of single-body greater Green’s functions,
given by g >

qν ðtÞ ¼ �iðnqν þ 1Þe�iωqν t�γqν jtj, where γqν is the line-
width of the normal mode labeled by (q, ν) as computed from
Fermi’s Golden Rule. The quasi-harmonic hypothesis requires
γ2qν=ω

2
qν � 1, implying that only almost-degenerate modes such

that jωqν � ωqν0 jtγqν þ γqν0 are allowed to contribute to the heat
conductivity.
Glasses are, by definition, aperiodic. Yet, the effect of periodicity

on large-enough models can be regarded as a size effect that
vanishes in the thermodynamic limit. It is thus customary to treat
glasses as finite models in a large supercell under PBCs sampled
only at the zone center of the BZ. Omitting the sum over the (only)
wave vector, Γ, and assuming the system is isotropic (thus, the
thermal conductivity tensor is proportional to the identity matrix)
the thermal conductivity reads:

κ ¼ 1
3V

X
ν;ν0

Cνν0 jvνν0 j2τνν0 (7)

The factor 1/3 comes from the average over the three Cartesian
directions, which are equivalent under the hypothesis of isotropy.
At the Γ point, the eigenvectors of the dynamical matrix can be
chosen to be real, and vνν0 becomes a real, antisymmetric
matrix2,17. The harmonic limit is obtained when all the linewidths
approach zero. In that case, the QHGK method reduces to the AF
model15,16:

κ ¼ π

3V

X
ν

CνDν; (8)
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where Cν is the modal specific heat and the modal diffusivity, Dν, is
defined as

Dν ¼
X
ν0

jvνν0 j2δðων � ων0 Þ: (9)

The Dirac-delta function appearing in the diffusivity is due to the
harmonic limit, limγν ;γν0!0 τνν0 , of the Lorentzian generalized
lifetimes defined in Eq. (6).
For crystalline materials, using a dense mesh in the BZ (q-mesh)

allows one to efficiently increase the number of modes, and it is
often required to get converged values of physical quantities, a
fortiori when the simulation cell is a (usually small) unit cell. In
model glasses, the lowest frequency allowed in a cubic simulation
cell with side L is of order 2πc/L, c being the sound velocity;
sampling a q-mesh mimics an artificial order by adding long-lived
modes below this threshold, thus reflecting the periodicity
induced by PBCs and determining a spurious increase of the
thermal conductivity. Indeed, real glasses below this threshold
frequency feature propagating waves whose wavelength is
proportional to their inverse frequency, and whose decay depends
on disorder20. A replicated model glass cannot be disordered on a
spatial scale larger than the original simulation cell. Thus, the
spurious modes whose wavelength is larger than the simulation
cell are unaffected by disorder and would propagate for longer
times than the corresponding modes in an infinite, actually
disordered, glass. In fact, finite wavevectors other than high-
symmetry points at the BZ boundary have, in general, a finite
group velocity, resulting in

κ ¼ 1
3V

P
qν

Cqνvqνvqν 1
2γqν

þ 1
3V

P
q;ν≠ν0

Cqνν0vqνν0vqν0ντqνν0 : (10)

The first term in the above equation is the same obtained by
treating a crystal in the Relaxation Time Approximation (RTA) of
the Boltzmann Transport Equation (BTE). When only third-order
anharmonic effects are included, this term gives rise to the 1/T
trend of κ in crystals at high temperatures. Sampling the BZ of a
glass model induces the same behavior, as recently observed in
ref. 7, where a 3 × 3 × 3q-mesh is shown to determine a low-
temperature divergence of the thermal conductivity of amor-
phous silica systems. The same does not happen for a genuinely
disordered system with an equivalent number of atoms (i.e., 33

times the number of atoms of the small model) sampled at the Γ
point; for such a system the thermal conductivity is a mono-
tonically increasing function of temperature7. Thus, replicating a
small disordered system by sampling its reciprocal space is
qualitatively different from simulating a correspondingly large
system in real space, since in the former case disorder is
suppressed at scales larger than its size. This behavior was also
observed in GKMD calculations on glass samples replicated in real
space33,34.

Hydrodynamic extrapolation of the thermal conductivity
The naive approach to deal with finite-size effects is to compute
the heat conductivity for model systems with increasing size, L, up
to convergence, κ1ðTÞ ¼ limL!1 κLðTÞ. The simplest way to
extrapolate κ∞(T) would then be to assume that κL can be written
as a power series in 1/L and perform a linear fit in 1/L. This
approach has two key issues: first, the whole procedure is
computationally expensive, since it requires the preparation of
samples with different sizes—at the very least three, in order to
meaningfully fit a straight line, but in practice we observe that
more points are usually needed; second, in cases where L is too
small for the linear contribution to be dominant, higher powers of
1/L might be necessary, thus increasing the number of points
required to perform a reliable fit. In the following, we develop a
method to bypass these obstacles making use of the features of
the low-energy excitations naturally present in glasses.

As mentioned above, propagons, diffusons, and locons differ by
the degree of localization they feature. This can be observed in the
Dynamical Structure Factor (DSF) that, for a harmonic system, is
defined as34–36:

S0bðω;QÞ ¼
X
ν

δðω� ωνÞjhνjQ; bij2 (11)

where the scalar product between normal modes and plane-wave
states is

hνjQ; bi ¼ 1ffiffiffiffiffiffi
NQ

p
X
iα

εbαðQÞϵνiαeiQ�RI ; (12)

α being the Cartesian component; Q ¼ 2π
L ðn;m; lÞ, with

n;m; l 2 N, is a wavevector in a cubic supercell of side L; RI the
position of the Ith atom; ϵν the eigenvector of the νth normal
mode; and εb(Q) a polarization (unit) vector (see Methods). The
latter can be chosen to be parallel or perpendicular to Q and can
be labeled by b= L, T1, T2, the longitudinal (parallel to Q) and
transverse (perpendicular) branches, respectively. Transverse
branches are degenerate, so we indicate with T the contributions
of both transverse branches. The DSF can be generalized to take
into account weak anharmonic effects as

Sbðω;QÞ ¼
X
ν

1
π

γν

γ2ν þ ðω� ωνÞ2
jhνjQ; bij2; (13)

where the Dirac-delta in Eq. (11) is replaced by a Lorentzian
function centered on the mode’s angular frequency, whose spread
is given by the mode’s linewidth. Equation (13) gains a
temperature dependence through the anharmonic linewidths
with respect to Eq. (11). The low-frequency, small-wavevector,
portion of each branch of the DSF features an almost linear
dispersion, ω≃ cQ, typical of acoustic phonons. In other words,
Sb(Q, ω) is a peaked function centered at ωQ= cbQ, cT,L being the
transverse/longitudinal speed of sound. For low-enough Q, the
profile of Sb(ω,Q) can be fitted as a function of the angular
frequency with a Lorentzian profile,

Sbðω;QÞ � AbðQÞ
π

ΓbðQÞ
ðω� cbQÞ2 þ ΓbðQÞ2

; (14)

allowing one to evaluate the speed of sound as well as the
wavevector dependence of the effective width, Γb(Q). Under the
assumption of isotropy, Sb(ω,Q)= Sb(ω, Q) and, consequently,
Γb(Q)= Γb(Q). Propagons are identified as those low-frequency,
low-wavevector, normal modes with linear dispersion that
populate the first portion of the DSF. The increasing broadening
of the dispersion identifies a cutoff frequency for propagons, ωP,
referred to as the Ioffe-Regel limit37.
The peaked shape of Sb(ω,Q) suggests the Q; bj i s are long-lived

excitations. In the long wavelength limit, they form an almost-
orthonormal basis even for aperiodic materials such as glasses35

(see Methods), whose time-evolution for positive times—as
inferred from the DSF—is proportional to e�i½cbQ�iΓbðQÞ�t . Unlike
the case of normal modes, which are eigenvectors of the
harmonic (disordered) Hamiltonian, plane-wave states decay both
through anharmonic interactions and as an effect of harmonic
disorder. In fact, even the harmonic DSF, S0b, features a finite width
for any Q35 without the need for any anharmonic effect. This does
not happen in a periodic system. In order to extrapolate the
thermal conductivity of larger systems, we separate the contribu-
tion of propagons from that of diffusons and locons:

κ ¼ κP þ κD: (15)

The first contribution, due to propagons, involves only normal
modes below the cutoff frequency, ωP. The second contribution
involves normal modes above such frequency, diffusons and
locons, and it is mainly due to diffusons. The propagon
contribution can be approximately written on the basis of acoustic
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plane waves Q; bj i35,38. The overall idea is to switch from the
basis of normal modes, whose decay can only be anharmonic, to a
basis of delocalized modes whose decay, encompassed in the
definition of Γb(Q), entails a combination of anharmonicity and
disorder. We demonstrate this in the Methods section, while
giving here just a sketch of the proof.
Let us consider the energy flux of Eq. (2); the resonant propagon

contribution to the energy flux reads:

bJ ¼ 1
V

X
Qbb0

Jbb
0

Q âyQbâQb0 ; (16)

where

âQb ¼
X
ν

hνjQ; biâν; (17)

and Jbb
0

Q is the matrix element of bJ in the plane-wave basis.
Similarly to what happens in crystals, such matrix elements can be
shown to have a block-matrix structure in the wavevector indices

Jbb
0

QQ0 � δQQ0 Jbb
0

Q : (18)

The two-point correlation function of the acoustic waves is related
to the anharmonic DSF by

hâQbðtÞâyQb0 i ¼
X
ν

jhνjQ; bij2hâνâyνie�iων t�γν jtj; (19)

that can be rewritten as

hâQbðtÞâyQb0 i � δbb0
1
2π

Z
e�iωtSbðω;QÞðnðω; TÞ þ 1Þdω

� δbb0 ðnðcbQ; TÞ þ 1Þe�icbQt�ΓbðQÞjtj:
(20)

The propagon contribution to Eq. (1) can thus be evaluated from
Eq. (20), resulting in

κP ¼ 1
3V

X
Q;b

CðcbQÞc2bτQb: (21)

The last equation defines the acoustic excitations’ lifetimes,
τQb ¼ 1

2ΓbðQÞ, and the frequency-dependent heat capacity,
CðωÞ ¼ _ω ∂nω

∂T . In principle, an inter-band contribution should also
appear between the transverse and longitudinal branches, with a
Lorentzian weight as in Eq. (4). However, longitudinal and
transverse branches are energetically well separated, i.e., ∣(cL−
cT)Q∣ ≫ ΓL(Q)+ ΓT(Q), both because in 3D materials cL>

ffiffiffiffiffiffiffiffi
4=3

p
cT39,

and because propagons are, by definition, modes with a sharp
linear dispersion relation, i.e., cbQ≫ Γb(Q). Equation (21) is
reminiscent of the RTA for crystals, and a similar equation
appeared many times in the literature on harmonic glasses (e.g.,
in Refs. 35,36,40), since it is just a statement that, at large-enough
length scales, glasses can be effectively described by a continuous
elastic model. Here, this fact is derived from first principles (i.e.,
from the QHGK theory) also including anharmonic effects.
The final step to evaluate the infinite-size limit of κ is to map Eq.

(21) onto the kinetic theory of gases. The sum over plane waves
can be recast as an integral over angular frequency in the L→∞
limit using the fact that, for propagons, the linear dispersion
relation, ω= cQ, is valid, and introducing per-branch densities of
states, ρbðωÞ ¼ 1

V

P
Qδðω� cbQÞ. This yields

κP ¼
X
b¼L;T

c2b
3

Z ωP

0
CðωÞρbðωÞ

1
2ΓbðωÞdω: (22)

Acoustic excitations feature a density of states of the Debye form,
i.e., ρTðωÞ ¼ ω2

π2c3T
and ρLðωÞ ¼ ω2

2π2c3L
. Once κP is available, one

computes the hydrodynamic extrapolation of the thermal
conductivity as

κhydro ¼ κP þ 1
3V

X
ν;ν0

Θðων;ν0 � ωPÞCνν0vνν0vν0ντνν0 ; (23)

where the second term comes from Eq. (7), and the Heaviside-
theta limits the sum to the nonpropagonic part of the spectrum.
The choice of ωP must satisfy certain requirements. For the

model to be valid, all the normal modes below ωP should be bona
fide propagons for both polarizations, so as to avoid the mixed
transverse-diffusons/longitudinal-propagons regime. Thus, even
though the IR limit is different for the two polarizations, ωP should
be less than the smallest of the two, which is generally the
transverse one. Slightly lower values can also be preferred to
guarantee that all the hypotheses regarding linear dispersion are
valid. Supplementary Note 3 includes a dedicated section that
provides practical suggestions on selecting the appropriate value
of ωP. Another important point is how to get a good estimate of Γb
as a function of ω, which is needed to compute κP from Eq. (22).
This is done by first fitting the computed DSFs, Eq. (13), as a
function of ω, at fixed Q, to a Lorentzian function, Eq. (14). We then
use the linear dispersion, ωb= cbQ, to get the functional
dependence of the linewidth upon frequency, Γb(ω). We finally
fit this dependence to a quartic polynomial, Γb(ω)= aω2+ bω4

with a, b > 0, as it can be observed in Fig. 1 for the linewidths of
aSi. A model of this form was proposed also in Ref. 41, where the
quadratic and quartic terms come, respectively, from the Umklapp
and isotopic scattering of long-wavelength phonons in crystalline
silicon. More generally, the Γ ~ ω2 trend is required by hydro-
dynamics23,42, while the Γ ~ω4 behavior—also found in experi-
ments43—can be rationalized in the continuous limit through
random media theory44,45, or for atomistic models through
harmonic perturbation theory, such as in the case of crystals with
mass disorder46,47 or random spring constants48. The crossover
between the ~ω2 and ~ω4 behaviors in the sound attenuation can
be understood analyzing nonaffine displacements in amorphous
solids49. A rule of thumb to assess whether the bandwidth can be
meaningfully computed from a glass sample of given size is to
check whether the minimum frequency available at that size, ωmin,
is smaller than the crossover frequency between anharmonicity
and disorder; namely, ωmint

ffiffiffiffiffiffiffiffi
a=b

p
.

In order to validate Eq. (23), we compare its predictions with
those of an improved version of the naive procedure outlined at
the beginning of this section. Namely, instead of a polynomial fit
of κL(T) in 1/L, which can easily incur overfitting due to the small
number of data points usually at one’s disposal, we opt to use a
different functional form suggested by the continuous model we
are using:

κðL; TÞ ¼ �A arctanðB=LÞ þ κ1; (24)

Fig. 1 Longitudinal and transverse linewidths. ΓL and ΓT are
computed from the DSF of an 13284-atom model of aSi at 100 K (a)
and 500 K (b). The solid and dashed gray lines indicate ~ω2 and ~ω4

behaviors, respectively.
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where A and B are positive parameters. This ansatz can be
derived from Eq. (22) under the following assumptions: (i) that
the classical limit is valid [i.e., C(ω)= kB)]; (ii) that the form of
the linewidth is Γ(ω)= aω2+ bω4; and (iii) that the only size
effect comes from the value of the minimum frequency
available at each size, ωmin ¼ 2πc=L. In principle, one would
need two sets of parameters, one for each polarization, but this
would unnecessarily complicate the fitting procedure. Using
just one set of parameters, as in Eq. (24), amounts to saying that
we are effectively averaging the contributions due to each
polarization. Under these simplifying hypotheses, Eqs. (22) and
(23) become

κðL; TÞ ¼ kB
2π2c

Z ωP

2πc=L
ω2 1

2ðaω2 þ bω4Þ dωþ κD

¼ κ1 � kB
4π2c

ffiffiffiffi
ab

p arctan 2πc
L

ffiffi
b
a

q� �
:

(25)

Since only low-energy modes with 0 ≤Q ≤ 2πc/L are involved, the
classical approximation of the modal specific heat is further
justified. This ansatz not only reproduces the 1/L trend for large-
enough sizes, but it also captures the non-linearity (in particular
the convexity) of our data. Figure 2 summarizes how the
hydrodynamic extrapolation scheme outlined above is applied
to estimating the bulk thermal conductivity of glass samples.

Numerical experiments
We now showcase the ability of our method to accurately predict
the bulk limit of the thermal conductivity for three paradigmatic
glasses, chosen because they have been extensively investigated
in the literature and because they are representative of different
regimes as concerns the role of propagating modes: amorphous
silica (aSiO2) is a material whose thermal transport properties are
mainly determined by diffusons; in amorphous silicon (aSi)
transport is dominated by propagons; the situation is somewhat
intermediate in amorphous silicon carbide (aSiC)36,50.
For each material, the heat conductivity is averaged over ten

different samples obtained through a melt-and-quench procedure
described in the Methods section.
Second- and third-order interatomic force constants as well as

normal-mode frequencies and lifetimes have been computed with
the κALDo17 code, using forces obtained by the LAMMPS MD
code51.
For notational convenience, the size-scaling data reported in

the following are plotted against the number replicas of the
fundamental simulation cell repeated along each Cartesian
component, ℓ= L/L0, where L is the actual linear size of the
simulation cell being employed and L0 is the size of the smallest
cell used for each material, which contains 8, 24, and 8 atoms for
aSiC, aSiO2, and aSi, respectively.

Amorphous silicon carbide. Figure 3a shows the DSF of aSiC. The
dispersion for the longitudinal branch is linear up to approxi-
mately 8.5 THz, in agreement with the IR limit found in Ref. 50.
From the slope of the linear dispersion, the speeds of sounds are
computed to be cL ≈ 8.0 km s−1 and cT ≈ 4.4 km s−1. We choose a
cutoff ωP/2π= 3 THz, in order to stay well within the linear
dispersion regime for both polarizations. In Fig. 4a, we report the
resulting κhydro for samples ranging from 4096 atoms (ℓ= 8) to
13824 atoms (ℓ= 12). Size effects are quite important at 100 K,
where the bulk conductivity is almost 35% larger than one of our
largest models. The hydrodynamic extrapolation performs well
with relatively small samples. At higher temperatures, size effects
are less striking; nonetheless, the hydrodynamic extrapolation still
improves results with respect to plain QHGK calculations.

Amorphous silica. The method is tested also on amorphous silica,
with a ωP/2π= 1.7 THz, which is quite low. The reason for this is
that, as shown in Fig. 3b, the IR limit for longitudinal waves is
reached for frequencies as small as ≈ 2 THz, which is quite smaller
than those of amorphous silicon and silicon carbide, whose values
are ≈ 8.5 THz and ≈ 9 THz, respectively50. This fact suggests that
the contribution of propagons to the thermal conductivity of
aSiO2 is minor, and that size effects are rather small. Our
calculations confirm these statements: Fig. 4b shows that not
only is the QHGK thermal conductivity of the 8000-atoms model
already large enough to be practically at convergence in size, but
that its dependence on inverse size, 1/ℓ, is practically linear for any
meaningful smaller size: thus, in this case, there is not much to
gain in computing hydrodynamic corrections for aSiO2, if
compared with other materials.

Amorphous silicon. aSi features a sharp linear dispersion in the
low-frequency region where the propagon linewidth is consider-
ably smaller than in aSiC and aSiO2, as one can see from Fig. 3e, f.
This reflects on the large value of the propagonic contribution to
the thermal conductivity: in fact, with ωP/2π= 3 THz, κP constitu-
tes about 60% of the thermal conductivity at room temperature, a
fraction that inevitably grows for lower temperatures, due to the
increasing importance of low-energy modes. The consequence of
the dominance of the propagons in the value of κ is that size
effects become rather crucial in aSi. In particular, the thermal
conductivity has a conspicuous nonlinear dependence on 1/ℓ in
the size range accessible to numerical simulations. Since such
nonlinearity is mainly due to propagons, it is well captured by the
fitting procedure discussed above.
In order to verify our results are not due to overfitting, we

performed some classical GKMD at high temperatures on systems
with larger sizes, up to 64000 atoms (ℓ= 20), which are not
affordable through lattice methods such as QHGK. As reported in
Supplementary Note 2, even with 64000 atoms κ is still far from
convergence; however, the computed GKMD thermal conductiv-
ities are compatible with the fit on the QHGK data, thus

Fig. 2 Graphical summary. This scheme represents the workflow necessary to implement the hydrodynamic extrapolation of the heat
conductivity described in this work.
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independently confirming the validity of the whole procedure.
Notwithstanding, the hydrodynamics extrapolation on samples
larger or equal than ℓ= 8 (N= 4096) leads to bulk thermal
conductivity values compatible with the fitted ones, as shown in
Fig. 4c.

Comparison with existing methods
A different approach has been recently proposed to extrapolate
the value of the bulk thermal conductivity in glasses from
simulations performed for small models and leveraging the
symmetry properties of the fictitious crystal resulting from the
periodic replica of the simulation cell in PBCs7. The proposed
method consists of two steps: a finite model for a glass under
PBCs is first treated as a genuine crystal, i.e., its vibrational
properties are sampled on a dense q-mesh in the BZ: we call this
procedure a crystalline model for the glass. The 1/T divergence of
the heat conductivity, resulting from crystalline order, is then
avoided by convolving the Lorentzian lineshape of the unphysical
low-frequency modes introduced by the periodic replicas of the
fundamental simulation cell with a smearing function whose
width, η, is carefully chosen as described below. While choosing
the smearing function to be Lorentzian would result in a
Lorentzian smeared lineshape whose width would be the sum
of the original and smearing linewidths, it was found that using a
Gaussian smearing function would lead to a better numerical
behavior of the procedure. Of course, the heat conductivities
computed with this method depend on the smearing width, and
they would in fact diverge, in the low-temperature limit, for
vanishing widths. In ref. 7 the choice of the smearing width relied
on the existence of a plateau in the dependence of the heat
conductivity on it. When such a plateau exists, the width so
chosen should be a compromise between a large enough value
allowing to encompass several normal modes and small values
necessary not to mimic spuriously large scattering sources.
In a nutshell, this protocol forces the QHGK (or, equivalently,

WTE) method for a nonphysical crystal—whose unit cell is the
whole simulation representing the glass model—to behave like
the AF model for low-frequency modes whose linewidths are

Fig. 4 Size scaling of the thermal conductivity for three glassy materials at different temperatures. Light blue circles are QHGK
calculations performed on samples of different sizes. Error bars are standard deviations over up to ten equivalent configurations. Light blue
solid lines and shaded areas are fits done according to Eq. (24) and respective error bars. Orange stars are hydrodynamic extrapolations of κ
done on top of QHGK calculations. Orange dashed lines denote the average value of κhydro over different sizes, while the shaded areas
represent the respective standard deviation. Panel a–c represent aSiC, aSiO2, and aSi, respectively.

Fig. 3 Anharmonic DSFs of three amorphous solids at 300 K. For
each material, the two polarizations, longitudinal (L) and transverse
(T), are reported in different subplots: a–b for aSiC; c–d for aSiO2;
e–f for aSi. The colormaps represent the intensity of the DSF
computed from Eq. (13). The red, solid, line and its spread are mode-
frequencies and linewidths obtained from Lorentzian fits of Sb(ω,Q)
for fixed values of Q, as explained in the Methods. The green,
straight lines are linear fits of the low-frequency portions of the
DSFs' mode-frequencies. The black, dashed, lines are the values of
ωP/2π for the three materials.
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smaller than the smearing width—i.e., the modes responsible for
the unphysical overestimate of κ—while doing almost nothing to
modes with higher frequency/larger linewidth.
This method was applied to amorphous silica (aSiO2)7. A

computationally affordable aSiO2 crystalline model treated with a
3 × 3 × 3q-mesh, once regularized with the above procedure,
yielded values of κ compatible with the temperature-dependent
thermal conductivity of a genuinely larger system with an
equivalent number of atoms, thus validating the whole procedure
for aSiO2. While we are able to reproduce these results and find a
plateau in the dependence of κ on the smearing width for our
aSiO2 samples, we cannot do so for other materials, where no
plateau is found, thus making it difficult in general to fix the value
of a suitable smearing width. In Supplementary Note 1 we test the
regularization procedure on amorphous silica, amorphous silicon
carbide, and amorphous silicon.
We rationalize these difficulties as follows. The low-temperature

behavior of the heat conductivity of bulk solids is brought about
by the interplay of anharmonicity and disorder. The former gives
rise to a ω2 dependence of Γb at low frequencies and dominates
the lowest-frequency portion of the propagon spectrum, while the
effects of the latter, contributing as ω4, emerge later and dominate
at larger frequencies. Sampling a periodically repeated cell of
linear size L on regular q-mesh completely misses the effect of
disorder for the modes introduced by periodicity of frequency
smaller than ~2πc/L. The convolution of the vibrational lineshapes
with a smearing function mimics the introduction of an effective
boundary-scattering term in the form of a constant linewidth,
rather than the correct frequency-dependent scattering due to
disorder. The net effect is that the thermal conductivity is forced
to quickly go to zero for vanishing temperatures. For materials
where the contribution of propagons to the heat conductivity is
small, such as aSiO2

36, the overdamping of low-frequency modes

does not constitute a problem; vice versa, it fails to capture the
main damping mechanisms that abate the heat conductivity in
the low-temperature regime in materials where the propagons’
contribution is significant, if not dominant. More details on
calculations based on ref. 7 can be found in Supplementary Note 1.

Temperature dependence of thermal conductivity
It is instructive to analyze the temperature dependence of aSi
since it is the material, among those at our disposal, where
propagons contribute the most to the value of the thermal
conductivity. Figure 5a compares the hydrodynamic extrapolation
with the QHGK calculations performed on progressively larger
systems. Figure 5b provides a breakdown of the extrapolated κ
into the propagon contribution, κP, and the diffuson one, κD. The
contribution of diffusons resembles the one of a standard AF
calculation20,35, ranging from small values at low temperatures to
some constant value around room temperature. Conversely, the
behavior of κP is rather surprising, as it decreases with increasing
temperature. This trend cannot be explained by a purely harmonic
theory, where the temperature dependence is solely determined
by the heat capacity2,16, and it is thus an anharmonic effect.
The comparison between the hydrodynamic extrapolation and

QHGK calculations highlights the significance of the former,
especially at lower temperatures, as illustrated in both Fig. 5a and
Fig. 4. This observation can be attributed to two key factors: (i) at
low temperatures, only propagons are populated and contribute
significantly to thermal conductivity. Consequently, it becomes
essential to employ a continuous model that accounts for
frequencies below the minimum frequency allowed by the
finite-size sample. (ii) Numerically accurate QHGK results require
the frequency spacing between modes to be smaller or
comparable to the anharmonic linewidths, as specified in Eq. (7).
As the anharmonic linewidths decrease with temperature,
achieving meaningful QHGK thermal conductivity values at low
temperatures necessitates a denser VDOS, i.e., larger systems.
Figure 5b also includes experimental measurement of the

thermal conductivity of aSi on samples of relatively large sizes
obtained with chemical vapor deposition techniques. The data are
sourced from Liu et al.52, Yang et al.53, and Wieczorek et al.54. The
respective films have thicknesses of 80 μm, 1.6–2.8 μm, and
2–3.6 μm. The motivation behind selecting these larger samples
from the literature is to minimize size effects and obtain an
estimate of the bulk thermal conductivity of aSi.
The experimental values of κ exhibit good agreement among

themselves above approximately 200 K. However, at lower
temperatures, Wieczorek et al.54 reports slightly smaller values
compared to the other sources. Overall, the behavior of the
thermal conductivity is well captured by κhydro, including the
relatively high value observed around 100 K. Nevertheless, our
model appears to slightly underestimate the thermal conductivity
across the entire temperature range. We identify two primary
reasons for this discrepancy.
One factor is the choice of the force field, specifically the Tersoff

force field, which is not explicitly designed to accurately
reproduce thermal conductivity. As a result, achieving numerical
agreement with experimental results using this force field may be
challenging. To address this issue, ab inito methods could be
employed.
Another factor is the refinement of fitting schemes to estimate

the parameters of Γb. More efficient techniques could be utilized
to compute the linewidths of the VDSF from larger systems
without the need of explicitly diagonalizing large matrices55.
Future work will address these issues to improve the accuracy of

our method and enhance the quantitative agreement with
experimental results56.
In conclusion, we have developed an effective model for the

low-frequency excitations in amorphous solids that allows one to

Fig. 5 Thermal conductivity of aSi as a function of temperature.
Panel a compares the hydrodynamic extrapolation of the thermal
conductivity and QHGK calculations. Panel b provides a breakdown
of κhydro into its the propagon contribution, κP, and the diffuson
contribution, κD; the results of the calculations are compared with
experimental measurements found in the literature.
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accurately compute the bulk limit of the thermal conductivity
from glass models of moderate size. Our method, which stands on
a combination of the QHGK approximation with various ideas that
have been floating around in the literature for some time now,
naturally accounts for the interplay of anharmonicity and disorder
in determining the transport properties of glasses. The resulting
protocol gets around the need for mock crystalline models for the
glass, which introduce spurious modes whose group velocities
bear little physical meaning. This fact is exemplified by the
extreme case of a 2 × 2 × 2q-mesh, where group velocities vanish
identically as all the points of the mesh lie on the surface of the BZ
and differ by a reciprocal-lattice vector from their negatives. As a
result, the thermal conductivity computed on a 2 × 2 × 2q-mesh is
practically indistinguishable from the one computed at the zone
center. Moreover, sampling the full BZ of a crystalline model for a
glass only affects the first, intraband RTA-like, term in Eq. (10),
while the second is already at convergence at the zone center for
rather small glass models. The RTA-like term grows with the size of
the q-mesh until it converges to some value, whose magnitude
may be very large and devoid of any significance.
The only requirement of our extrapolation technique is a finite

sample whose size can range from hundreds up to a few thousand
atoms, depending on the characteristics of the material. We have
tested our model on three paradigmatic glassy materials, aSiC,
aSiO2, and aSi, which display different convergence properties to
the bulk limit. When the effect of disorder is prominent (e.g., in
amorphous silica), size effects are small, and hydrodynamic
extrapolation contributes little to the converged value of κ. On
the other hand, when the glass is less disordered (e.g., amorphous
silicon), tens of thousands of atoms are required to obtain a
converged value of the bulk thermal conductivity, while the
hydrodynamic extrapolation gives satisfactory results with an
order of magnitude fewer atoms.

METHODS
Acoustic-sound-waves basis
For a system of N atoms, Q; bj i is a 3N-dimensional vector whose
projection on the Ith atomic site in the α direction is:

hI; αjQ; bi ¼ 1ffiffiffiffi
N

p εbαðQÞeiQ�RI ; (26)

where εb(Q), with b= L, T1, T2, are three orthonormal polarization
unit vectors. The scalar product between two plane-wave states is:

hQ; bjK; b0i ¼ 1
N

X
α

εb�α ðQÞεb0α ðKÞ
X
I

eiðK�QÞ�RI ; (27)

where the last sum is proportional to the Fourier Transform of the
atomic number density, ρ(r)= ∑Iδ(r− RI), i.e.

~ρðkÞ ¼
Z

ρðrÞe�ik�rd3r

¼ P
I

Z
δðr� RIÞe�ik�rd3r

¼ P
I
e�ik�RI :

(28)

Assuming that the material is homogeneous at length scales
larger than a certain wavelength, λ, implies that ~ρðk < 2π=λÞ tends
to a Dirac-delta function; consequently:

hQ; bjK; b0i ¼ P
α
εb�α ðQÞεb0α δQK

¼ δbb0δQK:
(29)

Therefore, the subset of vectors Q; bj i with ∣Q∣ < 2π/λ is
effectively orthonormal. Regarding the completeness problem,
we are only interested in describing the propagons, not all the

normal modes, which on the other hand would require a basis of
3N vectors. It can be argued that this set is sufficient for this
purpose38, as it can also be qualitatively understood from the plot
of the DSF, where low-frequency modes are decomposed in small-
Q plane waves only.
We are now in a position to write the propagon contribution

to thermal conductivity in the plane-wave basis. The first term
in the right-hand side of Eq. (15) in the main text couples only
pairs of propagons. This is not a property of the energy flux
operator, which has non-zero components for all different pairs
of normal modes, but it is a consequence of the narrow
Lorentzian functions appearing in the QHGK theory, Eq. (7).
Taking into account this separation in frequency thanks to the
Heaviside step function, let us consider the energy flux
operator

bJ ¼ _
P
νν0

ωνþων0
2 vνν0 â

y
νâν0ΘðωP � ωνÞΘðωP � ων0 Þ

¼ _
P
νν02P

ωνþων0
2 vνν0 â

y
νâν0

(30)

where the P subscript means that only pairs of propagons are
involved; the anti-resonant part of the flux, which gives a
negligible contribution to thermal conductivity2, is omitted. The
generalized velocity matrix is defined as2,17:

vανν0 ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffi
ωνων0

p
X
IJβγ

ðRαI � RαJ ÞΦJγ
Iβϵ

ν
Iβϵ

�ν0
Jγ (31)

where α, β, γ are Cartesian coordinates and ΦJα
Iβ ¼ 1ffiffiffiffiffiffiffiffi

MIMJ
p ∂2V

∂RαI ∂R
β
J

is the

Dynamical Matrix element between atoms I and J, whose masses
and positions are respectively MI, MJ and RI, RJ, and V is the
potential energy. To unclutter the notation, from now on we omit
the sums over Cartesian-coordinate labels, which is understood
when indices are repeated. In order to get to Jbb

0
Q , we first expand

the normal modes in plane waves

ϵνIα ¼
1ffiffiffiffi
N

p
X
Qb

hQ; bjνieiQ�RIεbαðQÞ;

and we observe that for propagons:

PP
ν
ωνhνjQ; biâν � cbQ

PP
ν
hνjQ; biâν

� cbQâQb:
(32)

The important point here is that we are able to factor ων out of
the sum due to the almost-linear dispersion of the DSF. This
translates into an orthogonality relation of normal modes whose
frequency is far from the dispersion line, i.e., ∣〈Q, b∣ν〉∣ ≈ 0 if
∣ωn− cbQ∣ ≪ Γb(Q). Plugging the last equations into the energy
flux operator of the propagons yields

bJ ¼ 1
N

P
QKbb0

cbQþcb0 K
4

ffiffiffiffiffiffiffiffiffiffiffiffi
cbcb0QK

p âyQbâKb0ε
b
αðQÞεb

0
β ðKÞ

´
P
IJ
ðRI � RJÞΦJβ

Iα e
iðQ�RI�K�RJÞ:

(33)

Under the assumption that the material is practically homo-
geneous above the λ scale, the dynamical matrix can only depend
on RI− RJ; therefore, with a change of variables (RI, RJ)↦ (RI+ RJ,
RI− RJ), we obtain

1
N

X
RIþRJ

eiðQ�KÞ�ðRIþRJÞ=2 ¼ δQK

and then

bJ ¼ �i_
X
Qbb0

cb þ cb0

4
ffiffiffiffiffiffiffiffiffiffi
cbcb0

p âyQbâQb0ε
b
αðQÞεb

0
β ðQÞ∇QΦ

β
αðQÞ; (34)
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where

∇QΦ
β
αðQÞ ¼ ∇Q

P
RI�RJ

eiQ�ðRI�RJÞΦβ
αðRI � RJÞ

¼ P
RI�RJ

ieiQ�ðRI�RJÞðRI � RJÞΦβ
αðRI � RJÞ:

(35)

From the DSF, we know that Q; bj i is practically a linear
combination of almost-degenerate normal modes, that are
eigenvectors of the dynamical matrix with eigenvalue c2bQ

2;
therefore, for b ¼ b0, we have thatX
α;β

εαbðQÞεβbðQÞ∇QΦ
β
αðQÞ � 2c2bQ: (36)

Thus, the energy flux becomes

bJ ¼ �i_
X
Q;b

c2bâ
y
QbâQbQþ mixed-polarization terms : (37)

The mixed-polarization terms do not contribute to the value of
thermal conductivity, since the two polarizations are well
separated in frequency. As such, these terms are not included in
our calculations.

Melt-and-quench generation of glass samples
Amorphous samples are obtained through a melt-and-quench
procedure starting from a crystalline conventional cubic cell
replicated ℓ times along each Cartesian direction. The molecular
dynamics simulations are carried out using the Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS51). The
melt-and-quench procedures are performed according to the
following recipes:
aSiO2. The interatomic forces are described with the Vashishta

force field57. Simulations are carried out with a timestep of 1 fs.
Starting from the β-cristobalite cubic conventional unit cell with a
mass density of 2.20, g cm−3, the crystal is melted at 7000 K. The
molten sample is quenched from 7000 K to 500 K in 10 ns9,58. The
sample is then thermalized at 500 K for 400 ps, and finally
equilibrated for 100 ps in the NVE ensemble. For each size, we
randomized the seed of the thermostat to obtain ten different
samples. The average mass density of the amorphous samples is
2.43 g cm−3, with a standard deviation across sizes of 0.01 g cm−3.
aSiC. The interatomic forces are described with the Vashishta

force field59,60. Simulations are carried out with a timestep of 1 fs.
For each size, the starting configuration is a crystalline cubic zinc-
blend structure with a mass density of 3.22 g cm−3. Following
Ref. 59, the system is gradually heated from 300 K to 4000 K at
constant null pressure. The solid/liquid transition is characterized
by a sharp increase in the volume between 3000 and 3500 K59.
Ten different liquid configurations are extracted every 2 ps from
an NVE trajectory. The molten configurations are then quenched
to 1000 K in 300 ps, and thermalized for 80 ps at constant
pressure. The system is further cooled down to 500 K with the
same procedure. The average mass density of the amorphous
samples is 2.98 g cm−3, with a standard deviation across sizes of
0.01 g cm−3.
aSi. The interatomic forces are described with the Tersoff force

field61. Simulations are carried out with a timestep of 0.5 fs. For
each size, the starting configuration is a crystalline diamond
conventional unit cell replicated ℓ times along each Cartesian
direction. Following ref. 62, the crystal is melted at 6000 K and
brought to 3000 K in 2 ns at fixed zero pressure. Then the system is
equilibrated at 3000 K for another 2 ns. The molten sample is
successively quenched from 3000 K to 2000 K in 10 ns, and finally
annealed from 2000 K to 300 K at fixed volume in another 10 ns.
Each glassy sample is equilibrated at 300 K for 10 ns. For each size,
ten different samples are prepared according to this recipe
beginning the quenching procedure from liquid configurations

obtained initializing the atomic velocities with different random
seeds. The average mass density of the amorphous samples is
2.275 g cm−3, with a standard deviation across sizes of
0.003 g cm−3.

Computation of the dynamical structure factors
The dynamical structure factors (DSFs) are computed according to
Eq. (13) in the main text. For low frequencies, the anharmonic
linewidths become smaller than the finite-size frequency spacing.
When this happens, the Lorentzian functions in Eq. (13) are so
narrow that few to no data points fall within its width. Thus, the
contribution to the DSF coming from low-frequency modes is
undersampled and affected by numerical noise. Under the
assumption that the DSF is a Lorentzian function, one can
overcome this issue by exploiting the closure of Lorentzian
functions under convolutions. In fact, introducing the shorthand
notation Aν(Q)≡ ∣〈ν∣Q, b〉∣2, and

Lðω; ηÞ 	 1
π

η

ω2 þ η2
;

a modified version of the DSF can be introduced as:

Sηbðω;QÞ ¼ P
ν
jhνjQ; bij2 1

π
γνþη

ðγνþηÞ2þðω�ωνÞ2

¼ P
ν
AnðQÞLðω� ων; γν þ ηÞ (38)

Then, by the closure of Lorentzians under convolution:

Sηbðω;QÞ ¼
Z

dω0 X
ν

AnðQÞLðω0; γνÞLðω0 � ðω� ωνÞ; ηÞ

¼
Z

dω0 X
ν

AnðQÞLðω0 þ ω� ων; γνÞLðω0; ηÞ

¼
Z

dω0Lðω0; ηÞSbðω;QÞ:

(39)

Since, for propagons, we assume that Sb(ω,Q) is a Lorentzian
function centered on ωb(Q)= cbQ and whose width is Γb(Q), we
get

Sηbðω;QÞ ¼
Z

dω0Lðω0; ηÞLðω0 þ ω� cbQ; ΓbðQÞÞ
¼ Lðω� cbQ; ΓbðQÞ þ ηÞ:

(40)

Due to this property, one can compute Γb(Q) subtracting η from
the width of Sηbðω;QÞ numerically calculated from Eq. (38) with a
large-enough η, since Sηbðω;QÞ is much less affected by under-
sampling than Sb(ω,Q).

Interpolation scheme for the anharmonic linewidths
The computation of third-order anharmonic linewidths in glasses
generally constitutes the bottleneck of QHGK calculations17, as it
scales as N3

atoms. Thus, this computation by itself would severely
limit our ability to study size effects. It is thus customary to adopt
some interpolation scheme for obtaining the linewidths of a large
model starting from a smaller one2,7,17. First, in order to smoothen
the data, we apply a Gaussian filter to the computed anharmonic
linewidths at each temperature, γν(T):

γðω; TÞ ¼
P

νγνðTÞ 1ffiffiffiffiffiffiffi
2πσ2

p exp½ðω�ωνÞ2
2σ2 �

P
ν

1ffiffiffiffiffiffiffi
2πσ2

p exp½ðω�ωνÞ2
2σ2 �

: (41)

Then, we spline-interpolate the smoothed function imposing a
quadratic behavior at vanishing frequencies, which is compatible
with the hydrodynamics of solids23. We average γ(ω, T) over disorder
by computing the mean of the interpolated linewidths over different
same-size samples of each material. The spline functions are finally
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evaluated on the frequencies of larger samples in order to obtain
their approximated anharmonic linewidths.
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